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Classification of short human exons and introns based on statistical features
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The classification of human gene sequences into exons and introns is a difficult problem in DNA sequence
analysis. In this paper, we define a set of features, called the sir(@2) features, which is derived from the
Z-curve features for the recognition of human exons and introns. The classification results show that SZ
features, while fewer in numbefthree in total, can preserve the high recognition rate of the original nine
Z-curve features. Since the size of SZ features is one-third oFZiterve features, the dimensionality of the
feature space is much smaller, and better recognition efficiency is achieved. If the stop codon feature is used
together with the three SZ features, a recognition rate of up to 92% for short sequences ofl@4gtbp can

be obtained.
DOI: 10.1103/PhysReVvE.67.061916 PACS nunter87.14.Gg
I. INTRODUCTION tained by using th&-curve feature$14—17. In this paper,

we investigate whether these features are still as effective in

The prediction of genes and the classification of codingecognizing the exons and introns of humans, which is a
and noncoding DNA sequences are popular research areas.fmich more challenging problem since the human exons and
the past twenty years, numerous advanced statistical gen#irons are much shorter in length37 bp in average{10—
finding algorithms have been developed. These algorithm$2,18—20. We then propose a set of more efficient statistical
operate on a basic assumption that every exon in a genonﬁgatures, callt_ad the _SZ features. We show that thesg fge_ltures
should have some distinct sequence features or properti€8hn be combmed with othe.r_features to achieve a significant
that can distinguish it from the surrounding regions, such a§mprovement in the recognition accuracy.
introns or intergenic regions. Several review papers about 1NheZ-curve based method was suggested by Zhang and
these algorithms have been published by Ficket?] and co-workers[Zl—Z:i. Itis based on the dlﬁergnces of single
Guigo [3]. Some of the sequence features that have beeﬂucle_otlde f_requenmes at_three codon positions between the
used are compositional bi&g], position weight matri{5], ~ Protein coding open reading frani®RFg and the noncod-
codon usage measufé], dicodon usage measufé] and N9 ones. Asgum_e that the frequencies of the bases A, C, G,
three-base periodicityg]. These features have been used ej-and T occurring in an ORF or a fragment of DNA sequence
ther singly or in combinations with different algorithms such With bases at positions 1,4,7..:2,5,8 .. .; and3,69 .. .,
asMZEF [9], GLIMMER [10], MORGAN [11], GENEMARK.HMM, @€ @1,C1,01,t1;82,C2,02.2;85,C3,03t3, respectively. In the
[12] and GENESCAN[13]. Although good results have been Z-curve method, the variables,y:,2:;X2,Y2.25;X3,Y3.Z5 are
obtained in the recognition of coding and noncoding regionglefined as
of prokaryotes gene, the strengths of the statistical features
are not sufficient to identify exons in humans because of Xi=(a;+g;)—(c;+t))
their limited average length. So the classification of coding N .
and noncoding sequences in humans is still a difficult prob- yi=@te)=(gitt) r(i=123, @
lem in bioinformatics. zi=(a+t)—(gi+¢)

Good recognition rate§.e., 95—98 % for the coding and
noncoding sequences of yeast and vibrio cholerae, and rend the nine features are denotedfhyto f4 as follows:
cently of other bacterial and archaeal genomes, can be ob-

f1=xq, fo=y1, f3=2y;
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For a DNA sequence witN bases, th&-lengthZ curve is V. THE MUTUAL INFORMATION CONTENT OF HUMAN
generated by computing the quantitiesf,, . .. ,fq for the EXONS AND INTRONS FEATURES
DNA segment from the f|r_s'g base position up to the base To measure the discrimination ability of the nidecurves
index n. Thus, the last position of th& curve denotes the features. f. f f and the three S7 features
frequency differences of single nucleotides in this entire se; R

quence, and can be used as features for the classification of 211, f12, we use an information-theoretic approach. Spe-
DNA sequence into an exon or an intrii4—16. criically, we want to measure how much information a par-

In this paper, we analyze the characteristics of a DNAt|cular featurefj tells us about the class label, where the

sequence which are captured by #ieurve features. A set of class label consists of exon or intron.
features, called the simplé (S2) features, is proposed for _The mutual |nformat|or[24,23 OT the jth feature,f;,
the recognition of short human exons and introns. Then\,’vIth respect to the class labeisis given by
Z-curve features and SZ features are compared using an m v
information-theoretic method, and the recognition rate for c=>3 Do, f-(k))lnp(wi”j(k)) (@)
human exons and introns, using the SZ features, is evaluated e =T plw) '
using theK-nearest-neighboiKNN) classifier.
where p(A,B) denotes the joint probability of observing
Il. DATABASES both eventsA and B, and p(B|A) denotes the conditional
probability of observing ever® after eventA has occurred.
We use the human exon and intron datagesfer to Ref. In Eq. (4), each featurd; hasv; discrete values which are
[27]). We extracted 1500 human exons and 1500 human inebtained by creating histograms. The mutual informatin
trons. Their lengths are all less than 140 bp, where bp standfeasures the information that featuretells us about the
for base pairs, and the exons are not frame specific. Althougblass label. Since
introns in humans can be potentially very long, short introns
were selected since they are more easily confused with exons p(w; ,f;(k))=p(w;) p(f;(k)|wi)=p(wi|f;(k))p(f;(k)),
and also to avoid introducing any bias in recognition due to
length. The exons are used as positive samples and introns as

negative samples. Eq. (4) can be rewritten as
Ill. THE PROPOSED SZ FEATURES o d p(f;(K)|w;)
' Gj=2>, 2 plw)p(fj(K)|o)n—E—=" (6)
i=1k=1 p(f;(k))

In the nine Z-curve features, & +@;)—(c;+t;)(i
=1,2,3) displays the number of bases of the purines or PYEor exon and intron classification, we have two classes, so

rimidines types in frames 1, 2, and 3, respectively. Amon%zzl The prior probabilities for codingexon and noncod-
the three frames, only one is at the correct coding positioning regions (intron) for human genome is roughly
Since the predominant bases at the first codon position ar (coding)=0.05, p(noncoding)=0.95

purines, this feature has a large positive value at the correct In order to compare the effect of dataset size on mutual

iotd)ingis%loas;io?h[e?’]hu%ksgis(i" btzsesfegftutrﬁediaxi:h)o_f)?i ketoinformation, we randomly select 500 exons and 500 introns
‘ . as training dataset 1, 750 exons and 750 introns as trainin
(M=A, CorK=G, T) types in frames 1, 2, and 3, respec g g

: ’ " dataset 2, and 1000 exons and 1000 introns as trainin
tively; and the featureg;+t;) —(g;+c;) displays the num- g

X dataset 3, all from the database of 1500 exons and 1500
ber of bases of the hydrogen bonds types, i.e., bases of strofjg, o of humans. In order to provide a baseline comparison
H bonds §=G, C) or weak H bondsW=A, T), in frames

) about the mutual information of each feature, we construct
1, 2, and 3, respectively23].

. . - training dataset 4 by randomly selecting 1000 exons twice

In order to improve the recognition efficiency, we Prop0S€ang training dataset 5 by randomly selecting 1000 introns

a set of features, called the SZ features, to replace the ning;ice The mutual information of five training datasets is
Z-curve features: computed and averaged over three experiméfable | and

Fig. 1. In Fig. 1, the markers square, circle, point, diamond,

max (a;+9;) — (Ci+1)] and asterisk represent datasets 1 to 5, respectively.

' The following results can be summarized from Table |
ma){(ai+ci)_(gi+ti)] (|:123) (3) and Flg 1.

‘ B (1) The mutual information of the training datasets 1, 2,

max{ (a;+1t;)—(g;+c;)] and 3 is similar. It shows that if the training dataset repre-
[ sents the population well, the information of each feature
does not increase with the size of the dataset.
Since we expect the single nucleotide differences to be far (2) The mutual information of each feature in the training
different from a random residual when the start position cordatasets 1, 2, and 3 is much larger than that of the corre-
responds to the correct reading frame, the max operatiosponding features in the training datasets 4 and 5. It shows
over the three positions will ensure that the SZ features caphat theZ-curve features and the SZ features are both effec-
ture information at the correct reading frame. tive for recognizing human short exons and introns.
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FIG. 1. The mutual information of different features in different
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TABLE |. Mutual Information of different features for human exons and introns.

500 750 1000 Training Training

Samples Samples Samples Set 4 Set 5

(a1+g1)—(cyt+ty) 0.0753 0.0726 0.0629 0.0143 0.0108
(aztcy)—(gyt+ty) 0.0635 0.0610 0.0559 0.0076 0.0091
(a;+ty)—(ci+gy) 0.1106 0.1182 0.1208 0.0122 0.0113

z (ap+9,) —(catty) 0.0929 0.0757 0.0775 0.0107 0.0099
(ap+cy)—(grtty) 0.1120 0.0974 0.0920 0.0078 0.0070
(ap+ty)—(cat92) 0.1375 0.1491 0.1483 0.0132 0.0119
(azt+gs3)—(c3tts) 0.0797 0.0639 0.0628 0.0071 0.0089
(azt+c3)—(gstts) 0.0400 0.0331 0.0323 0.0055 0.0112
(azt+tz)—(c3+0s) 0.0937 0.1092 0.1040 0.0121 0.0152

maX{ (a;+g;)— (¢ +t)] 0.1624 0.1476 0.1418 0.0093 0.0081

Sz max(a+¢)—(gi+t)] 0.1099 0.1034 0.0960 0.0097 0.0091

max{(a+1t)—(c+g)] 0.2726

0.2932 0.3096 0.0107 0.0128

I
Z Curve Features | 87 Features

A\

A

8 3
Features

training datasets.

(3) For theZ-curve features, the mutual information var-
ies greatly among different features. The mutual information
of f5 andfg is larger, and the mutual information 6§ is
smaller.

(4) The order ofZ-curve features and SZ features ar-
ranged by their mutual information is as followk;,>f
>feg>f3>f1 >fg>fs>f,>f>f,>f,>fg. The mutual
information of the SZ features is generally larger than the
mutual information of theZ-curve features. Among them, the
mutual information off 1, is the largest.

(5) The mutual information of the SZ features is generally
larger than the maximum mutual information of the three
correspondingZ-curves features for training datasets 1, 2,
and 3.

V. CORRELATIONS BETWEEN FEATURES

The correlation coefficients of th&-curve features and
the SZ features are computed using Ef).and are listed in
Table Il. In Eq.(7), x; andy; are the two features to be

correlated;andyare their mean values computed over the
samples, anah is the number of samples in the dataset. In

TABLE Il. The correlation coefficients of th&-curve features and the SZ features of human exons and introns.

Z Z, Zs Z, Zs Zs Z; Zg Ze sz Sz, Sz
Z 1 -012 001 0.33 0.03 0.16 029 —-0.16 -002 070 -008 0.14
Z, -0.12 1 005 -0.06 0.23 0.11 0.00 023 -0.11 -007 062 0.08
Zs 0.01 0.05 1 —-003 -008 0.30 0.11 0.06 0.32 0.06 001 058
Z, 033 -0.06 —0.03 1 -0.08  0.08 031 -007 0.03 060 -004 013
Zs 0.03 023 -0.08 —0.08 1 010 -0.09 0.24 0.11 0.00 0.60  0.16
Zs 0.16 0.11 0.30 0.08 0.10 1 -001 -012 025 0.11 0.04  0.65
Z; 0.29 0.00 0.11 031 -0.09 —0.01 1 -0.17  0.05 060 —0.07 0.12
Zg -0.16  0.23 006 -007 024 -012 -0.17 1 000 -014 059  0.00
Ze -0.02 -011 0.32 0.03 0.11 0.25 0.05 0.00 1 0.05 —0.01 0.56
sz 070 —0.07 0.6 0.60 0.00 0.11 060 —0.14  0.05 1 -002 023
Sz, -0.08  0.62 001 -004 0.60 004 -007 059 -001 -0.02 1 0.16
SZs 0.14 0.08 0.58 0.13 0.16 0.65 0.12 0.00 0.56 0.23 0.16 1
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The 3D distribution of exons and introns .
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Table II, Z;(i=1 to 9 are theZ-curve features, and S&

the two groups, and a linear decision plane dividing the two

=1 to 3 are the SZ features. The correlation values in Tableflasses cannot be easily obtained. To evaluate the recognition
Il show that the SZ features have less redundancy than tH@te using the nin&-curve features and the three SZ fea-

Z-curve features, as we would have expected:

21 (X —=X)(yi—y)

()

fuy= . . .
\/ 2 =22 (yi—y)?
i=1 i=1
The following results can be summarized from Table II.
(a) The correlations between tlecurve features are gen-
erally small, except as noted below.
(b) The correlations between the SZ features are generall
small.
(c) The correlations between SandZ;, SZ andZ;, 3,
SZ and Z; ¢ (i=1,2,3), are large since they are closely
related by Eq(3). In addition, the correlations betwedn,
Zi .3, andZ; s (i=1,2,3), are larger than the ones between

otherZ-curve features, and also larger than the smallest cor- &

relation value among the SZ features.
VI. RECOGNITION OF SHORT HUMAN EXONS
AND INTRONS

The exons and introns can be visualized in three-
dimensional(3D) space and 2D projections using the SZ

tures, the same datasets, with the two types of feature sets,
are classified using the KNN classifier. Unlike the Fisher
discriminant algorithm, KNN algorithm does not require the
decision surface to be linear. The KNN algorithm uses
=10 (experimentation shown in Fig. 3 indicated thit
=10 is a reasonable value to Wisad the Euclidean distance
metric. A sixfold cross-validation test is adopted.
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FIG. 3. Effect of K on the accuracy of the KNN algorithm,

featureqFig. 2). As can be seen, although the two classes argesting on 750 training samples and 750 testing sampleg-oseve
somewhat separated, there is a considerable overlap betwefeatures.
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TABLE Ill. The average sensitivity, specificity, and accuracy for human exon and intron recognition
based on the nin&-curve features using the KNN classifier.

Number of Number of
training samples testing samples Sensitivity Specificity Accuracy
250 1250 0.7768 0.9056 0.8412
500 1000 0.8010 0.916 0.8585
750 750 0.8267 0.9060 0.8663
1000 500 0.843 0.9140 0.8785
1250 250 0.8520 0.9160 0.8840

TABLE IV. The average sensitivity, specificity, and accuracy for exon and intron recognition based on the
three SZ features using the KNN classifier.

Number of Number of
training samples testing samples Sensitivity Specificity Accuracy
250 1250 0.8592 0.8148 0.8370
500 1000 0.8560 0.8310 0.8435
750 750 0.8540 0.8387 0.8463
1000 500 0.8540 0.8270 0.8405
1250 250 0.8680 0.8580 0.8630

TABLE V. The average sensitivity, specificity, and accuracy for exon and intron recognition based on the
three SZ features using the Fisher algorithm.

Number of Number of
training samples testing samples Sensitivity Specificity Accuracy
250 1250 0.7668 0.8420 0.8044
500 1000 0.7600 0.8555 0.8077
750 750 0.7680 0.8460 0.8070
1000 500 0.7710 0.8360 0.8035
1250 250 0.7800 0.8680 0.8240

TABLE VI. The average sensitivity, specificity, and accuracy for exon and intron recognition based on the
three SZ features and the stop codon feature.

Number of Number of
training samples testing samples Sensitivity Specificity Accuracy
250 1250 0.9012 0.8824 0.8918
500 1000 0.8970 0.8900 0.8935
750 750 0.9013 0.8800 0.8906
1000 500 0.9140 0.891 0.9025
1250 250 0.9160 0.9220 0.9190
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In the dataset, 1500 exons and 1500 introns are randomihe number of triplets TAA, TAG, and TGA occurring in
divided into two parts. Part 1 is taken as the training set an@ach of the three frames of the sequence is counted. Let the
part 2 as the testing set. The sensitivity, specificity, and actotal number of the triplets contained in all the three frames
curacy of the algorithm based on part 2 are calculated. Therin a sequence be denoted byThe number of frames con-
the procedure is applied again by reversing the roles of th&ining the three triplets is a sequence denotedpye., K
two parts, i.e., part 2 is now taken as the training set and part 0,1,2,3. The stop codon feature is then definedfhy
1 as the testing set. The above procedure is repeated threg(1+K?)n [18]. We can see that the recognition accuracy,
times. For the first time, part 1 contains 750 exons and 758pecificity, and sensitivity have all improved when the SZ
introns, and part 2 contains 750 exons and 750 introns. Fdeatures are augmented with the stop codon features. The
the second and third times, the partition of the two partssixfold cross-validation test demonstrated that the accuracy
becomes 50861000 and 258 1250, respectively. The aver- of the SZ features with the stop codon added is better than
age sensitivity, specificity, and accuracy over the sixfold89%.
cross-validation test are calculated and listed in Tables Il It is interesting to compare our recognition results with
and 1V, respectively. The sensitivityS{) and specificity the results reported in Ref18]. In Table VII of Ref.[18],

(Sp) are as defined in Refi26], whereS; is the proportion of  they compared the average recognition accuracy of their al-
coding nucleotides that have been correctly classified as codjorithm with two other algorithms, i.e., the lengthen-

ing andS,, is the proportion of noncoding nucleotides that shuffling fast Fourier transform and the Markov chain model

have been correctly classified as noncoding. The sixfoldor short human coding and noncoding sequences. They re-
cross-validation test indicated that the accuracy of theported the accuracies of 87.2%, 78.1%, and 89.5%, respec-
Z-curve features is better than 84%, and the accuracy of thively, for sequences with length of 129 bp. For sequences of
SZ features is better than 83%. length 162 bp, the accuracies of 90.8%, 80.7%, and 90.1%,

As a comparison, the recognition result using the Fisherespectively, were obtained. Our results with sequences of
discriminant algorithm is shown in Table V. The sixfold length 140 bp indicated that the SZ features together with the
cross-validation test indicated that the accuracy of the SZtop codon feature can perform on par or better than the three
features based on the Fisher algorithm is about 80%. Thialgorithms on the recognition of short human coding and
result agrees with that suggested in Fig. 2, that is, a simplaoncoding sequences.
decision plane adequately separating the two classes cannot

be obtained.
.. VII. CONCLUSIONS
The recognition tests show that SZ features are able to
maintain the good recognition rate of ti@ecurve features, A set of features, called the SZ features, is proposed for

while having better recognition efficiendy.e., similar rec- the classification of short human exons and introns. Due to
ognition rate but using fewer featupe¥his is due to the fact their ability to capture information at the correct reading
that the max operation in the SZ features is able to capturfame, the SZ features were able to preserve the good recog-
the information at the correct reading frame. If SZ featuresiition rate ofZ-curve features while using much fewer fea-
and other type of features are used together, the recognitidares. If the SZ features and the other additional features,
rate can be improved considerably. For example, the thresuch as the stop codon feature, are used together, the recog-
SZ features and the stop codon feature are used together foition rate can be improved significantly. Experiments on
recognizing short human exons and introns, and the recogniecognizing the short human exons and intrgssquence

tion results are list in Table VI. The stop codon feature hadength 140 bpusing the three SZ features and the stop codon
been used by Wanfl8]. In the coding frame of a gene, at feature were able to give a recognition accuracy of 89—92 %
least one of the triplets TAA, TAG, and TGA is uniquely based on the sixfold cross-validation test.

used as the last codon of the gene. On the average, the trip-
lets TAA, TAG, and TGA occur about every 20 bases in the
DNA sequences. The distribution of the triplets in the coding
regions is apparently different from those in the noncoding This work was supported by a CityU interdisciplinary re-
and intergenic regions. In deriving the stop codon featuresearch gran{Grant No. 9010003
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