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Classification of short human exons and introns based on statistical features
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The classification of human gene sequences into exons and introns is a difficult problem in DNA sequence
analysis. In this paper, we define a set of features, called the simpleZ ~SZ! features, which is derived from the
Z-curve features for the recognition of human exons and introns. The classification results show that SZ
features, while fewer in numbers~three in total!, can preserve the high recognition rate of the original nine
Z-curve features. Since the size of SZ features is one-third of theZ-curve features, the dimensionality of the
feature space is much smaller, and better recognition efficiency is achieved. If the stop codon feature is used
together with the three SZ features, a recognition rate of up to 92% for short sequences of length,140 bp can
be obtained.

DOI: 10.1103/PhysRevE.67.061916 PACS number~s!: 87.14.Gg
in
s

en
m
om
rt
a
o

e

e
ch

n
n

ur
o

in
ob

o

e in
s a
and

cal
tures
ant

and
le
the

, G,
ce
I. INTRODUCTION

The prediction of genes and the classification of cod
and noncoding DNA sequences are popular research area
the past twenty years, numerous advanced statistical g
finding algorithms have been developed. These algorith
operate on a basic assumption that every exon in a gen
should have some distinct sequence features or prope
that can distinguish it from the surrounding regions, such
introns or intergenic regions. Several review papers ab
these algorithms have been published by Fickett@1,2# and
Guigo @3#. Some of the sequence features that have b
used are compositional bias@4#, position weight matrix@5#,
codon usage measure@6#, dicodon usage measure@7# and
three-base periodicity@8#. These features have been used
ther singly or in combinations with different algorithms su
asMZEF @9#, GLIMMER @10#, MORGAN @11#, GENEMARK.HMM,
@12# and GENESCAN @13#. Although good results have bee
obtained in the recognition of coding and noncoding regio
of prokaryotes gene, the strengths of the statistical feat
are not sufficient to identify exons in humans because
their limited average length. So the classification of cod
and noncoding sequences in humans is still a difficult pr
lem in bioinformatics.

Good recognition rates~i.e., 95–98 %! for the coding and
noncoding sequences of yeast and vibrio cholerae, and
cently of other bacterial and archaeal genomes, can be
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tained by using theZ-curve features@14–17#. In this paper,
we investigate whether these features are still as effectiv
recognizing the exons and introns of humans, which i
much more challenging problem since the human exons
introns are much shorter in length~137 bp in average! @10–
12,18–20#. We then propose a set of more efficient statisti
features, called the SZ features. We show that these fea
can be combined with other features to achieve a signific
improvement in the recognition accuracy.

The Z-curve based method was suggested by Zhang
co-workers@21–23#. It is based on the differences of sing
nucleotide frequencies at three codon positions between
protein coding open reading frame~ORFs! and the noncod-
ing ones. Assume that the frequencies of the bases A, C
and T occurring in an ORF or a fragment of DNA sequen
with bases at positions 1,4,7, . . . ;2,5,8, . . . ; and3,6,9, . . . ,
are a1,c1,g1,t1;a2,c2,g2,t2;a3,c3,g3,t3, respectively. In the
Z-curve method, the variablesx1,y1,z1;x2,y2,z2;x3,y3,z3 are
defined as

H xi5~ai1gi !2~ci1t i !

yi5~ai1ci !2~gi1t i !

zi5~ai1t i !2~gi1ci !
J ~ i 51,2,3!, ~1!

and the nine features are denoted byf 1 to f 9 as follows:

f 15x1 , f 25y1 , f 35z1 ;

f 45x2 , f 55y2 , f 65z2 ; ~2!

f 75x3 , f 85y3 , f 95z3 .
©2003 The American Physical Society16-1
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For a DNA sequence withN bases, theN-lengthZ curve is
generated by computing the quantitiesf 1 , f 2 , . . . ,f 9 for the
DNA segment from the first base position up to the ba
index n. Thus, the last position of theZ curve denotes the
frequency differences of single nucleotides in this entire
quence, and can be used as features for the classification
DNA sequence into an exon or an intron@14–16#.

In this paper, we analyze the characteristics of a D
sequence which are captured by theZ-curve features. A set o
features, called the simpleZ ~SZ! features, is proposed fo
the recognition of short human exons and introns. Th
Z-curve features and SZ features are compared using
information-theoretic method, and the recognition rate
human exons and introns, using the SZ features, is evalu
using theK-nearest-neighbor~KNN! classifier.

II. DATABASES

We use the human exon and intron datasets~refer to Ref.
@27#!. We extracted 1500 human exons and 1500 human
trons. Their lengths are all less than 140 bp, where bp sta
for base pairs, and the exons are not frame specific. Altho
introns in humans can be potentially very long, short intro
were selected since they are more easily confused with e
and also to avoid introducing any bias in recognition due
length. The exons are used as positive samples and intro
negative samples.

III. THE PROPOSED SZ FEATURES

In the nine Z-curve features, (ai1gi)2(ci1t i)( i
51,2,3) displays the number of bases of the purines or
rimidines types in frames 1, 2, and 3, respectively. Amo
the three frames, only one is at the correct coding posit
Since the predominant bases at the first codon position
purines, this feature has a large positive value at the cor
coding position @3#. Likewise, the feature (ai1ci)2(gi
1t i) displays the number of bases of the amino or k
(M5A, C or K5G, T! types in frames 1, 2, and 3, respe
tively; and the feature (ai1t i)2(gi1ci) displays the num-
ber of bases of the hydrogen bonds types, i.e., bases of s
H bonds (S5G, C) or weak H bonds (W5A, T), in frames
1, 2, and 3, respectively@23#.

In order to improve the recognition efficiency, we propo
a set of features, called the SZ features, to replace the
Z-curve features:

5
max

i
@~ai1gi !2~ci1t i !#

max
i

@~ai1ci !2~gi1t i !#

max
i

@~ai1t i !2~gi1ci !#
6 ~ i 51,2,3!. ~3!

Since we expect the single nucleotide differences to be
different from a random residual when the start position c
responds to the correct reading frame, the max opera
over the three positions will ensure that the SZ features c
ture information at the correct reading frame.
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IV. THE MUTUAL INFORMATION CONTENT OF HUMAN
EXONS AND INTRONS FEATURES

To measure the discrimination ability of the nineZ-curves
features, f 1 , f 2 , . . . ,f 9, and the three SZ feature
f 10, f 11, f 12, we use an information-theoretic approach. Sp
cifically, we want to measure how much information a p
ticular featuref j tells us about the class labelv, where the
class label consists of exon or intron.

The mutual information@24,25# of the j th feature, f j ,
with respect to the class labelsv is given by

Gj5(
i 51

m

(
k51

v j

p„v i , f j~k!…ln
p„v i u f j~k!…

p~v i !
, ~4!

where p(A,B) denotes the joint probability of observin
both eventsA and B, and p(BuA) denotes the conditiona
probability of observing eventB after eventA has occurred.
In Eq. ~4!, each featuref j hasv j discrete values which are
obtained by creating histograms. The mutual informationGj
measures the information that featuref j tells us about the
class label. Since

p„v i , f j~k!…5p~v i !p„f j~k!uv i…5p„v i u f j~k!…p„f j~k!…,
~5!

Eq. ~4! can be rewritten as

Gj5(
i 51

m

(
k51

v j

p~v i !p„f j~k!uv i…ln
p„f j~k!uv i…

p„f j~k!…
. ~6!

For exon and intron classification, we have two classes
m52. The prior probabilities for coding~exon! and noncod-
ing regions ~intron! for human genome is roughly
p(coding)50.05, p(noncoding)50.95.

In order to compare the effect of dataset size on mut
information, we randomly select 500 exons and 500 intro
as training dataset 1, 750 exons and 750 introns as trai
dataset 2, and 1000 exons and 1000 introns as train
dataset 3, all from the database of 1500 exons and 1
introns of humans. In order to provide a baseline compari
about the mutual information of each feature, we constr
training dataset 4 by randomly selecting 1000 exons tw
and training dataset 5 by randomly selecting 1000 intro
twice. The mutual information of five training datasets
computed and averaged over three experiments~Table I and
Fig. 1!. In Fig. 1, the markers square, circle, point, diamon
and asterisk represent datasets 1 to 5, respectively.

The following results can be summarized from Table
and Fig. 1.

~1! The mutual information of the training datasets 1,
and 3 is similar. It shows that if the training dataset rep
sents the population well, the information of each featu
does not increase with the size of the dataset.

~2! The mutual information of each feature in the trainin
datasets 1, 2, and 3 is much larger than that of the co
sponding features in the training datasets 4 and 5. It sh
that theZ-curve features and the SZ features are both eff
tive for recognizing human short exons and introns.
6-2
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TABLE I. Mutual Information of different features for human exons and introns.

500 750 1000 Training Training
Samples Samples Samples Set 4 Set

(a11g1)2(c11t1) 0.0753 0.0726 0.0629 0.0143 0.010
(a11c1)2(g11t1) 0.0635 0.0610 0.0559 0.0076 0.009
(a11t1)2(c11g1) 0.1106 0.1182 0.1208 0.0122 0.0113

Z (a21g2)2(c21t2) 0.0929 0.0757 0.0775 0.0107 0.009
(a21c2)2(g21t2) 0.1120 0.0974 0.0920 0.0078 0.007
(a21t2)2(c21g2) 0.1375 0.1491 0.1483 0.0132 0.0119
(a31g3)2(c31t3) 0.0797 0.0639 0.0628 0.0071 0.008
(a31c3)2(g31t3) 0.0400 0.0331 0.0323 0.0055 0.0112
(a31t3)2(c31g3) 0.0937 0.1092 0.1040 0.0121 0.015

max@(ai1gi)2(ci1ti)# 0.1624 0.1476 0.1418 0.0093 0.008
SZ max@(ai1ci)2(gi1ti)# 0.1099 0.1034 0.0960 0.0097 0.009

max@(ai1ti)2(ci1gi)# 0.2726 0.2932 0.3096 0.0107 0.012
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FIG. 1. The mutual information of different features in differe
training datasets.
In

06191
~3! For theZ-curve features, the mutual information va
ies greatly among different features. The mutual informat
of f 3 and f 6 is larger, and the mutual information off 8 is
smaller.

~4! The order ofZ-curve features and SZ features a
ranged by their mutual information is as follows:f 12. f 10
. f 6. f 3. f 11. f 9. f 5. f 4. f 1. f 7. f 2. f 8. The mutual
information of the SZ features is generally larger than
mutual information of theZ-curve features. Among them, th
mutual information off 12 is the largest.

~5! The mutual information of the SZ features is genera
larger than the maximum mutual information of the thr
correspondingZ-curves features for training datasets 1,
and 3.

V. CORRELATIONS BETWEEN FEATURES

The correlation coefficients of theZ-curve features and
the SZ features are computed using Eq.~7! and are listed in
Table II. In Eq. ~7!, xi and yi are the two features to b
correlated,x̄ and ȳ are their mean values computed over t
samples, andn is the number of samples in the dataset.
8

1

TABLE II. The correlation coefficients of theZ-curve features and the SZ features of human exons and introns.

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 SZ1 SZ2 SZ3

Z1 1 20.12 0.01 0.33 0.03 0.16 0.29 20.16 20.02 0.70 20.08 0.14
Z2 20.12 1 0.05 20.06 0.23 0.11 0.00 0.23 20.11 20.07 0.62 0.08
Z3 0.01 0.05 1 20.03 20.08 0.30 0.11 0.06 0.32 0.06 0.01 0.5
Z4 0.33 20.06 20.03 1 20.08 0.08 0.31 20.07 0.03 0.60 20.04 0.13
Z5 0.03 0.23 20.08 20.08 1 0.10 20.09 0.24 0.11 0.00 0.60 0.16
Z6 0.16 0.11 0.30 0.08 0.10 1 20.01 20.12 0.25 0.11 0.04 0.65
Z7 0.29 0.00 0.11 0.31 20.09 20.01 1 20.17 0.05 0.60 20.07 0.12
Z8 20.16 0.23 0.06 20.07 0.24 20.12 20.17 1 0.00 20.14 0.59 0.00
Z9 20.02 20.11 0.32 0.03 0.11 0.25 0.05 0.00 1 0.05 20.01 0.56
SZ1 0.70 20.07 0.06 0.60 0.00 0.11 0.60 20.14 0.05 1 20.02 0.23
SZ2 20.08 0.62 0.01 20.04 0.60 0.04 20.07 0.59 20.01 20.02 1 0.16
SZ3 0.14 0.08 0.58 0.13 0.16 0.65 0.12 0.00 0.56 0.23 0.16
6-3
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FIG. 2. The distribution of the
three SZ features of exons and in
trons in 3D space and 2D projec
tions in X-Y, X-Z, and Y-Z
planes. Gray points represent e
ons and black circles represent in
trons.
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Table II, Zi( i 51 to 9! are theZ-curve features, and SZi( i
51 to 3! are the SZ features. The correlation values in Ta
II show that the SZ features have less redundancy than
Z-curve features, as we would have expected:

f xy5

(
i 51

n

~xi2 x̄!~yi2 ȳ!

A(
i 51

n

~xi2 x̄!2(
i 51

n

~yi2 ȳ!2

. ~7!

The following results can be summarized from Table I
~a! The correlations between theZ-curve features are gen

erally small, except as noted below.
~b! The correlations between the SZ features are gene

small.
~c! The correlations between SZi andZi , SZi andZi 13 ,

SZi and Zi 16 ( i 51,2,3), are large since they are close
related by Eq.~3!. In addition, the correlations betweenZi ,
Zi 13, andZi 16 ( i 51,2,3), are larger than the ones betwe
otherZ-curve features, and also larger than the smallest
relation value among the SZ features.

VI. RECOGNITION OF SHORT HUMAN EXONS
AND INTRONS

The exons and introns can be visualized in thr
dimensional~3D! space and 2D projections using the S
features~Fig. 2!. As can be seen, although the two classes
somewhat separated, there is a considerable overlap bet
06191
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the two groups, and a linear decision plane dividing the t
classes cannot be easily obtained. To evaluate the recogn
rate using the nineZ-curve features and the three SZ fe
tures, the same datasets, with the two types of feature
are classified using the KNN classifier. Unlike the Fish
discriminant algorithm, KNN algorithm does not require th
decision surface to be linear. The KNN algorithm usesK
510 ~experimentation shown in Fig. 3 indicated thatK
510 is a reasonable value to use! and the Euclidean distanc
metric. A sixfold cross-validation test is adopted.

FIG. 3. Effect of K on the accuracy of the KNN algorithm
testing on 750 training samples and 750 testing samples useZ-curve
features.
6-4
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TABLE III. The average sensitivity, specificity, and accuracy for human exon and intron recogn
based on the nineZ-curve features using the KNN classifier.

Number of Number of
training samples testing samples Sensitivity Specificity Accuracy

250 1250 0.7768 0.9056 0.8412
500 1000 0.8010 0.916 0.8585
750 750 0.8267 0.9060 0.8663
1000 500 0.843 0.9140 0.8785
1250 250 0.8520 0.9160 0.8840

TABLE IV. The average sensitivity, specificity, and accuracy for exon and intron recognition based o
three SZ features using the KNN classifier.

Number of Number of
training samples testing samples Sensitivity Specificity Accuracy

250 1250 0.8592 0.8148 0.8370
500 1000 0.8560 0.8310 0.8435
750 750 0.8540 0.8387 0.8463
1000 500 0.8540 0.8270 0.8405
1250 250 0.8680 0.8580 0.8630

TABLE V. The average sensitivity, specificity, and accuracy for exon and intron recognition based
three SZ features using the Fisher algorithm.

Number of Number of
training samples testing samples Sensitivity Specificity Accuracy

250 1250 0.7668 0.8420 0.8044
500 1000 0.7600 0.8555 0.8077
750 750 0.7680 0.8460 0.8070
1000 500 0.7710 0.8360 0.8035
1250 250 0.7800 0.8680 0.8240

TABLE VI. The average sensitivity, specificity, and accuracy for exon and intron recognition based o
three SZ features and the stop codon feature.

Number of Number of
training samples testing samples Sensitivity Specificity Accuracy

250 1250 0.9012 0.8824 0.8918
500 1000 0.8970 0.8900 0.8935
750 750 0.9013 0.8800 0.8906
1000 500 0.9140 0.891 0.9025
1250 250 0.9160 0.9220 0.9190
061916-5
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WU et al. PHYSICAL REVIEW E 67, 061916 ~2003!
In the dataset, 1500 exons and 1500 introns are rando
divided into two parts. Part 1 is taken as the training set
part 2 as the testing set. The sensitivity, specificity, and
curacy of the algorithm based on part 2 are calculated. Th
the procedure is applied again by reversing the roles of
two parts, i.e., part 2 is now taken as the training set and
1 as the testing set. The above procedure is repeated
times. For the first time, part 1 contains 750 exons and
introns, and part 2 contains 750 exons and 750 introns.
the second and third times, the partition of the two pa
becomes 50011000 and 25011250, respectively. The aver
age sensitivity, specificity, and accuracy over the sixf
cross-validation test are calculated and listed in Tables
and IV, respectively. The sensitivity (Sn) and specificity
(Sp) are as defined in Ref.@26#, whereSn is the proportion of
coding nucleotides that have been correctly classified as
ing andSp is the proportion of noncoding nucleotides th
have been correctly classified as noncoding. The sixf
cross-validation test indicated that the accuracy of
Z-curve features is better than 84%, and the accuracy of
SZ features is better than 83%.

As a comparison, the recognition result using the Fis
discriminant algorithm is shown in Table V. The sixfo
cross-validation test indicated that the accuracy of the
features based on the Fisher algorithm is about 80%. T
result agrees with that suggested in Fig. 2, that is, a sim
decision plane adequately separating the two classes ca
be obtained.

The recognition tests show that SZ features are able
maintain the good recognition rate of theZ-curve features,
while having better recognition efficiency~i.e., similar rec-
ognition rate but using fewer features!. This is due to the fact
that the max operation in the SZ features is able to cap
the information at the correct reading frame. If SZ featu
and other type of features are used together, the recogn
rate can be improved considerably. For example, the th
SZ features and the stop codon feature are used togethe
recognizing short human exons and introns, and the reco
tion results are list in Table VI. The stop codon feature h
been used by Wang@18#. In the coding frame of a gene, a
least one of the triplets TAA, TAG, and TGA is unique
used as the last codon of the gene. On the average, the
lets TAA, TAG, and TGA occur about every 20 bases in t
DNA sequences. The distribution of the triplets in the cod
regions is apparently different from those in the noncod
and intergenic regions. In deriving the stop codon featu
06191
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the number of triplets TAA, TAG, and TGA occurring i
each of the three frames of the sequence is counted. Le
total number of the triplets contained in all the three fram
in a sequence be denoted byn. The number of frames con
taining the three triplets is a sequence denoted byK, i.e., K
50,1,2,3. The stop codon feature is then defined byf SC
5(11K2)n @18#. We can see that the recognition accura
specificity, and sensitivity have all improved when the S
features are augmented with the stop codon features.
sixfold cross-validation test demonstrated that the accur
of the SZ features with the stop codon added is better t
89%.

It is interesting to compare our recognition results w
the results reported in Ref.@18#. In Table VII of Ref. @18#,
they compared the average recognition accuracy of their
gorithm with two other algorithms, i.e., the lengthe
shuffling fast Fourier transform and the Markov chain mod
for short human coding and noncoding sequences. They
ported the accuracies of 87.2%, 78.1%, and 89.5%, res
tively, for sequences with length of 129 bp. For sequence
length 162 bp, the accuracies of 90.8%, 80.7%, and 90.
respectively, were obtained. Our results with sequence
length 140 bp indicated that the SZ features together with
stop codon feature can perform on par or better than the t
algorithms on the recognition of short human coding a
noncoding sequences.

VII. CONCLUSIONS

A set of features, called the SZ features, is proposed
the classification of short human exons and introns. Due
their ability to capture information at the correct readi
frame, the SZ features were able to preserve the good re
nition rate ofZ-curve features while using much fewer fe
tures. If the SZ features and the other additional featu
such as the stop codon feature, are used together, the re
nition rate can be improved significantly. Experiments
recognizing the short human exons and introns~sequence
length 140 bp! using the three SZ features and the stop cod
feature were able to give a recognition accuracy of 89–9
based on the sixfold cross-validation test.
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